If it's not what You are looking for type in the equation solver your own equation and let us solve it.
w^2-28w-17=0
a = 1; b = -28; c = -17;
Δ = b2-4ac
Δ = -282-4·1·(-17)
Δ = 852
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$w_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$w_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{852}=\sqrt{4*213}=\sqrt{4}*\sqrt{213}=2\sqrt{213}$$w_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-28)-2\sqrt{213}}{2*1}=\frac{28-2\sqrt{213}}{2} $$w_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-28)+2\sqrt{213}}{2*1}=\frac{28+2\sqrt{213}}{2} $
| (x/2)/2=192 | | 2c+c+12=78= | | -5/2x=35 | | 4/5x+x=18/5 | | 20=t+6/5 | | t/14=9+13 | | 3√91=x | | 91/x3=1 | | 8s-4=7s+12 | | 1/3(2x+7)=11 | | 5x+(x-11)=5x-14 | | x3=91 | | 5/2x+3/4=25/4 | | 4u^2=15u+4 | | 4z+2z+-8=3z+11 | | 4m+2m+2=9m+5 | | 6^2+x-1=0 | | 4u^2+8u+0=0 | | x+5/8=-2 | | 2c-4=4c+10 | | √x^2=16 | | -1x-15=36 | | 6x2+128x+56=0 | | 4^2x+64=20(4)^x | | 5x2+25x-180=0 | | 26=4(u+5)-6u | | 85x2-74x-115=0 | | 10+q=-1 | | 35x2-21x-476=0 | | 2b=13 | | 7x2-136x-768=0 | | 7x=4x+5- |